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We study the diffusion of N particles on an infinite line. The particles obey the standard diffusion equation
and interact by a hard-core interaction. The problem has an exact solution, from which we derive the single-
particle and two-particle probability distributions for arbitrary initial conditions, as expansions in powers of
t−1/2, where t denotes time. Explicit expressions are given for the moments of the displacement for each of the
particles and correlations of displacements between any pair of particles. The mth moment grows as tm/2 in the
leading order. Correlations in the system are quite strong. Two of the interesting features are as follows. �1�
Correlation between the displacements of the central particle and that of any other particle decays with the
label distance exponentially, but with a correlation length of the order of N. �2� Correlations of a particle near
one edge with those on the other edge are much larger than with those near the center. This implies that the size
of the assembly expands quite symmetrically with time as t1/2.
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I. INTRODUCTION

The diffusion of interacting particles has been extensively
studied due to its numerous applications in biological,
chemical, and physical processes �1,2�. Examples of these
processes are the flow of ions and water through molecular-
sized channels in membranes �3�, sliding proteins along
DNA �4�, transport of adsorbate molecules through zeolites
�2�, carrier migration in polymers and superionic conductors
�5�, and migration of adsorbed molecules on surfaces �6�.
Recently diffusion of water molecules in carbon nanotubes
has also been studied and the results seem to reflect features
typical of such diffusion �7�.

In one dimension, interactions play a crucial role and alter
some qualitative features of the diffusion process, as was first
shown in a pioneering study by Harris �8�. He showed that a
tagged particle follows a subdiffusive behavior: the mean
square displacement grows with time as t1/2. The result has
been confirmed in subsequent numerical studies for many
kinds of models �9,10�, and a physical understanding of this
behavior has been achieved in these contexts through exact
�11� and approximate solutions �9,10,12–16�. In most of the
studies, the interaction between particles is taken to be the
hard-sphere interaction, which makes the particles impen-
etrable. This diffusion process is also termed “single-file dif-
fusion” in the literature. The models considered are either
lattice models, in which the double occupation of a site is
prohibited, or continuum models, in which particle pairs re-
flect from each other on meeting.

In this paper, we study the continuum model, which was
first solved by Rödenbeck et al. �11� for arbitrary number N
of particles on an infinite line. These authors presented an
exact solution of the one-particle probability distribution for
an ensemble average over random initial conditions. They
also obtained results for a nonzero density of particles and
showed that for this model also the mean square displace-
ment varies as t1/2 in the long-time limit. This was followed
by the work of Aslangul �17�, who gave an exact solution for
this problem for a finite number of particles, but for one
particular initial condition, which is that all the particles start

from one point. He obtained the one-particle distribution
function and showed that the mean displacement is also non-
zero for a finite assembly of particles, growing as t1/2 to the
right if the particle is in the right half of the assembly, and to
the left if the particle is in the left half of the assembly. He
also gave an expression for the correlation function of the
displacements of the two particles at the two ends of the
assembly.

The purpose of this work is to generalize earlier results in
the continuum model for N particles on an infinite line for
arbitrary initial conditions and to study the general two-
particle correlation functions. We develop expansions in
powers of t−1/2 and obtain to two leading orders �i� the one-
particle distribution function for each of the particles, and �ii�
the two-particle distribution function for each pair of par-
ticles. We present explicit results for the mean displacement
and mean sqare displacement, in particular their variations
with the position of the particle. We next give a general
formula for the correlated moments of the displacements.
Numerical evaluation of these correlations reveals several
interesting features. Correlations are surprisingly strong and
long ranged, and moreover show interesting finite-size ef-
fects for the particles in the exterior regions. The paper is
organized as follows. In Sec. II, we present the analytical
results for the N-particle probability distribution and charac-
terize the one-particle distribution functions by giving for-
mulas for all the moments of displacement for each of the
particles. We then present some numerical results for the
mean and the mean square displacements. In Sec. III, we
study two-particle correlations by calculating the moments of
displacement for all pairs of particles. This is followed by
numerical evaluation of some of the above quantities to il-
lustrate the nature of correlations in this system. We end the
paper with a summary of the results and a discussion in Sec.
IV.

II. PROBABLITY DISTRIBUTION AND SINGLE-
PARTICLE MOMENTS

For the sake of completeness, we first present a derivation
of the probability distribution, which is a little different from
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that of earlier papers �11,17�. The distribution function
Q�x1 ,x2 , . . . ,xN ; t� obeys the usual diffusion equation

�Q

�t
= �

i

�2Q

�2xi
. �1�

Interactions among the particles are incorporated through the
conditions

� �

�xi
−

�

�xi+1
�Q��x1,x2, . . . ,xN;t��xi=xi+1

= 0, �2�

which physically imply that the particles cannot cross each
other. If 	�n�x�e−�nt
 denotes the complete set of the single-
particle solutions with the desired boundary conditions, then
the N-particle solution obeying the conditions of Eq. �2� can
be written as

Q�x1,x2, . . . ,xN;t� = �
	ni


A�	ni
�Dn1,n2,. . .�x1,x2, . . . ;t� , �3�

where Dn1,n2,. . .�x1 ,x2 , . . . ; t� is a completely symmetrized
product of one-particle solutions, given as

Dn1,n2,. . .�x1,x2, . . . ;t� = �
P

�n1
�x1

P� ¯ �nN
�xN

P�exp�− �
i

�ni
t� ,

�4�

where P represents permutations of �x1 ,x2 , . . . ,xN� and xj
P is

the j coordinate in permutation P. The summation is over all
the permutations. The coefficients A�	ni
� are determined
from the initial conditions. The above solution is valid for a
given sector of the coordinates. If the initial positions of the
particles are X1�X2� . . . �XN for particles 1, 2,…, N, re-
spectively, then Q�x1 ,x2 , . . . ,xN ; t� is nonzero only in the sec-
tor x1�x2� ¯ �xN. For the infinite line, the one-particle
eigenfunctions and eigenvalues are: �k�x�=exp�ikx� /�2�;
�k=Dk2. Using these one obtains,

Q�x1,x2, . . . ,xN;t� = �2��−N/2�
	kj


A�	kj
�

��
P

exp�− Dt�
j

kj
2 + i � kjxj� .

�5�

If we take

A�	kj
� = exp�− i�
j

kjXj� , �6�

it is easily seen that the required initial condition is achieved
for the above sector of 	xj
’s. Performing the summation over
k ’s, one gets

Q�x1,x2, . . . ,xN;t� =
1

�4�Dt�N/2�
P

�exp�−
1

4Dt
�

i

�xi − Xi
P�2�

��
i=1

N−1

��xi+1 − xi� . �7�

We now integrate this distribution function to characterize
various one-particle and two-particle distribution functions.
For this purpose, we first consider the mth moment of the
displacement of the kth particle,

pm�k,t� =
1

�4�Dt�N/2�
P


−�

�

dx1
x1

�

dx2 ¯

�
xN−1

�

dxN�xk − Xk�m exp�−
1

4Dt
�

i

�xi − Xi
P�2� .

�8�

Introducing the variables ui= �xi−Xi
P� /�4Dt and changing

the order of integrations to keep the integration over uk as the
last, one arrives at the form

pm�k,t� = �4Dt�m/2�
P


−�

� duk

��
e−uk

2
�uk − Yk

P − Yk�m

�
−�

uk+�k,k−1
P duk−1

��
e−uk−1

2
¯ 

−�

u2+�2,1
P du1

��
e−u1

2

�
uk+�k,k+1

P

� duk+1

��
e−uk+1

2
¯ 

uN−1+�N−1,N
P

� duN

��
e−uN

2
,

�9�

where Yi=Xi /�4Dt, Yi
P=Xi

P /�4Dt, and �ij
P =Yi

P−Y j
P. For

clarity of the procedure, we choose to write this result com-
pactly by defining the following two sequences of iterated
functions:

c1Erf�x� = 
x

� du
��

e−u2
=

1 − erf�x�
2

,

c2Erf�x,�1� = 
x

� du
��

e−u2
c1Erf�u + �1� ,

cm+1Erf�x,�m,�m−1, . . . ,�1�

= 
x

� du
��

e−u2
cmErf�u + �m,�m−1, . . . ,�1� , �10�

and

g1Erf�x� = 
−�

x du
��

e−u2
=

1 + erf�x�
2

,

g2Erf�x,�1� = 
−�

x du
��

e−u2
g1Erf�u + �1� ,

gm+1Erf�x,�m,�m−1, . . . ,�1�

= 
−�

x du
��

e−u2
gmErf�u + �m,�m−1, . . . ,�1� . �11�

Then
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pm�k,t� = �4Dt�m/2�
P


−�

� duk

��
e−uk

2
�uk − Yk

P − Yk�m

�gk−1Erf�u + �k,k−1
P ,�k−1,k−2

P , . . . ,�2,1
P �

� cN−kErf�u + �k,k+1
P ,�k+1,k+2

P , . . . ,�N−1,N
P � . �12�

From the above expression, it is easy to develop an expan-

sion in powers of t−1/2. This is done by expanding the func-

tions in the integrand in powers of �k,j
P and Yi

P, as they each

carry the factor of �4Dt�−1/2. Noting that �P�k,j
P =0, we obtain

the first two terms as

pm�k,t� = �4Dt�m/2N!
−�

� du
��

e−u2
umgk−1Erf�u,0,0, . . . ,0�cN−kErf�u,0,0, . . . ,0� + m�4Dt��m−1�/2

��
P

�Xk
P − Xk�

−�

� du
��

e−u2
um−1gk−1Erf�u,0,0, . . . ,0�cN−kErf�u,0,0, . . . ,0� + O�t�m−2�/2� . �13�

These equations are further simplified by noting that

cmErf�u,0, . . . ,0� =
1

m!
�c1Erf�u��m,

gmErf�u,0, . . . ,0� =
1

m!
�g1Erf�u��m. �14�

This allows us to write

pm�k,t� =
N!

�k − 1�!�N − k�!
�4Dt�m/2Em�k − 1,N − k�

+
�N − 1�!

�k − 1�!�N − k�!
m�4Dt��m−1�/2�

l

�Xl − Xk�

�Em−1�k − 1,N − k� , �15�

where

Em�I,J� = � 1

2I+J�
−�

� du
��

e−u2
um�1 + erf�u��I�1 − erf�u��J.

�16�

The above formula characterizes the single-particle distribu-
tion of the displacement of the kth particle by giving all its
moments in the long-time limit. Note that the first term is
independent of the initial conditions and agrees with the re-
sult given by Aslangul �17�. The physical features are largely
associated with the first two moments of the particle dis-
placements. The mean displacement of the kth particle is

�xk� = �X� + �4DtvN�k� , �17�

vN�k� =
N!

�k − 1�!�N − k�!
E1�k − 1,N − k� , �18�

where �X	 denotes the average over the initial positions of
all the particles. As noted by Aslangul, the nonzero value of
the mean displacement is one clear effect of interactions in a
finite assembly of particles. This is basically the effect of
asymmetry, a particle on the right of center is pushed right,

as its motion to the left is blocked by more particles than the
number blocking it from the right. Similarly, the particles on
the left side of the center are pushed left in a symmetric
manner, as E1�I ,J�=−E1�J , I� and E1�I ,J�	0 for I	J. The
mean displacement increases as �4Dt�1/2 and, in Fig. 1, we
show the variation of the coefficient vN�k� with particle num-
ber, for some values of N. The variation is shown for the
right side of the assembly with l=k−kM, where kM labels the
central particle. For particles near the center of the assembly,
the moments can be approximately evaluated analytically for
large N in the following manner. Considering an assembly of
an odd number of particles, we write k= �N+1� /2+ l; then
the moments of displacement in terms of l are
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FIG. 1. �Color online� Plots of vN�l� with l �l=k−kM, where kM

labels the central particle� according to Eq. �18� for four values of N
as indicated. The inset shows the variation of the inverse slopes k0

of these plots with N. These vary linearly with N.
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�xl
m� = N�4Dt�m/2 �N − 1�!

�N − 1

2
− l�!�N + 1

2
− l�!

1

2N−1
−�

�

ume−u2

��1 − erf2�u���N−1�/2�1 + erf�u�
1 − erf�u��l

. �19�

Due to the factor �1−erf2�u���N−1�/2 the integrand is nonzero
in a very narrow region around zero. Thus, for large N and
small l, we can expand other factors in powers of u to obtain

�xl
m�/�4Dt�m/2 � N

1
�2�N

exp�− l2/2N�
−�

�

ume−�2N/��u2

��1 +
4ul
��

� . �20�

Setting m=1, we obtain to the leading order

vN�l� =
�l

2N
. �21�

This shows that near the center vN�l� rises linearly with l,
with a slope decreasing as 1 /N. As shown in Fig. 1, the
numerical data conform to this variation of vN�l�. The varia-
tion of the inverse slope, k0 with N is shown in the inset of
Fig. 1, which also agrees with the analytical evaluation. To-
ward the edge vN�k� rises rapidly as expected on physical
grounds. As shown by Aslangul �17�, for the edge particles,
vN should grow as �log N for large N, which we verified by
numerical evaluation.

In this paper, we have numerically evaluated the formulas
for vN�k� and other quantities involved in mean-square dis-
placement and correlation functions for N up to 101. In prin-
ciple, these formulas can be computed for arbitrarily large
values of N, but there are practical numerical problems.
These formulas involve two factors, a combinatorial factor
which becomes huge even for moderately large N, and an
integral containing functions raised to powers of order N,
which make the integrands extremely small. So a judicious
manipulation between the two factors is required for the cor-
rect computation of these formulas. The approximate ana-
lytic evaluation of the formulas indicates the basic trends
these quantities follow at large N, and we believe that our
computations up to N=101 establish these, though computa-
tions for larger N would certainly be desirable. Moreover,
there is now intrinsic interest in finite-size effects in small
assemblies under nonequilibrium conditions.

Next, we write the expression for the mean-square dis-
placement of the kth particle,

p2�k,t� = �4Dt�dN�k� − �4Dt�1/22vN�k�
N

�
l

�Xk − Xl� ,

�22�

where dN�k� can be read off from Eq. �15�. Note that the t1/2

term is negative for all values of k and represents a substan-
tial correction for the particle toward the edges at early
times. The coefficient dN�k� is symmetric about the central
particle for which it is the minimum. In Fig. 2, we show its

variation with l for some values of N. For small l and large
N, we can use Eq. �20� to deduce

dN�l� = dN�0� + bNl2, �23�

with dN�0�=�3/2 /8N and bN=3�3/2 /4N2. For small l, the re-
sults shown in Fig. 2 fit this variation very well. Our result
on 1 /N variation of dN�0� agree with the results of Harris �8�
and Aslangul �17�. The variations of dN�0� and bN with N are
exhibited in Fig. 3, the latter in the inset. The coefficient
dN�0� is expected to decrease as 1 /N; thus we show the best
fit of the numerical results with this variation. Similarly we
show the fit of the data for bN with the analytically derived
variation of 1 /N2. The quality of these fits is not good
enough to establish these variations quantitatively. Clearly,
computations for larger N are required to confirm the ana-
lytical results.

III. CORRELATIONS

As mentioned above, a very significant effect of interac-
tions is to induce rather strong correlations among the
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FIG. 2. �Color online� dN�l� vs l according to Eq. �20� for four
values of N. The particle labels l are the same as in Fig. 1.
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FIG. 3. �Color online� Numerical results for dN�0� and bN �in-
set�. Analytically dN�0� should decrease as 1 /N for large N. The line
shows the best fit with this variation. The line in the inset shows the
best fit for bN according to the analytically derived variation as
1 /N2.
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particles. A good measure of this is the correlator
CN�k ,k+r , t�= �
xk
xk+r�, where 
xk=xk−Xk. After the
change of variables as in Eq. �9�, this is given by

CN�k,k + r,t� = �4Dt�1/2�
P


−�

� du1

��
e−u1

2

�
u1+�1,2

P

� du2

��
e−u2

2
¯ 

uk−1+�k−1,k
P

� duk

��
e−uk

2

��uk − Yk
P − Yk� ¯ 

uk+r−1+�k+r−1,k+r
P

� duk+r

��
e−uk+r

2

��uk+r − Yk+r
P − Yk+r� ¯ 

uN−1+�N−1,N
P

� duN

��
e−uN

2
.

�24�

We again develop a large-time expansion in powers of t−1/2

by expanding the above expression in terms of �i,j
P and Yi.

Denoting the first term, which is of order t, by CN
�1��k ,k

+r , t�, we obtain

CN
�1��k,k + r,t� = �4Dt�N!

−�

� du1

��
e−u1

2
u1

� du2

��
e−u2

2
¯

�
uk−1

� duk

��
e−uk

2
uk

� 
uk

� duk+1

��
e−uk+1

2
¯ 

uk+r−1

� duk+r

��
e−uk+r

2
uk+r

� 
uk+r

� duk+r+1

��
e−uk+r+1

2
¯ 

uN−1

� duN

��
e−uN

2
.

�25�

Now integrations over all variables other than uk and uk+r can
be carried out as demonstrated below:

CN
�1��k,k + r,t� = �4Dt�N!

−�

� du1

��
e−u1

2
¯

�
uk−1

� duk

��
e−uk

2
ukF�uk� , �26�

where

F�uk� =
1

�N − k − r�!uk

� duk+1

��
e−uk+1

2
¯ 

uk+r−1

� duk+r

��
e−uk+r

2
uk+r

� �c1Erf�uk+r��N−k−r. �27�

By changing the order of integration over the first k−1 vari-
ables, followed by a similar change of order for the nexr r
−1 variables, one finds

CN
�1��k,k + r,t� = �4Dt�

N!

�k − 1�!�N − k − r�!−�

�

�
du
��

e−u2
u�g1Erf�u��k−1

u

� du1

��
e−u1

2
¯

�
uk−1

� dv
��

e−v2
v�c1Erf�v��N−k−r

= �4Dt�
N!

�k − 1�!�r − 1�!�N − k − r�!
E3�N,k,r� ,

�28�

where

E3�N,k,r� =
1

2N−2
−�

� du
��

e−u2
u

��1 + erf�u��k−1
u

� dv
��

e−v2
v�erf�v�

− erf�u��r−1�1 − erf�v��N−k−r. �29�

The next order terms proportional to �4Dt�1/2 in CN�k ,k
+r , t� are seen to be

�
l

�Xl − Xk��
xk+r�1 + �
l

�Xl − Xk+r��
xk�1, �30�

where the subscript 1 on the averages in the above formulas
denote the leading t1/2 contribution. This allows us to write

GN�k,k + r;t� = �
xk
xk+r� − �
xk��
xk+r�

= 4Dt� N!

�k − 1�!�r − 1�!�N − k − r�!
E3�N,k,r�

− vN�k�vN�k + r�� . �31�

The calculation of the higher-order two-particle moments
follows identical manipulation, and the leading-order term is
given as

��
xk�M�
xk+r�L� = �4Dt��M+L�/2 N!

�k − 1�!�r − 1�!�N − k − r�!

�
−�

� du
��

e−u2
uM�g1Erf�u��k−1

�
u

� dv
��

e−v2
vL� erf�v� − efr�u�

2
�r−1

��c1Erf�v��N−k−r. �32�

We now evaluate these correlators numerically. The quan-
tity, gN�kM , l�=GN�kM ,kM + l� /4Dt, which is the time-
independent coefficient of the correlation between the dis-
placement of the central particle �labeled kM� and the
displacement of the kth particle, k=kM + l is shown in Fig. 4
on a logarithmic scale. This is an odd function, so the plot
contains only the right side. One finds that these correlations
extend right up to the edge of the assembly. In the interior,
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the correlators can be well fitted to an exponential decay,
gN�kM , l�=g0 exp�−l /�N�. These are seen as straight-line fits
for small l in Fig. 4. Quite remarkably, the correlation length
�N �measured in terms of particle labels� turns out to be of
the order of the number of particles in the assembly. In the
inset of Fig. 4, we show the variation of �N with N. It rises
linearly with N, being a little larger than N /2. We believe
that the edge effects cause the deviations from the exponen-
tial fits. However, note that the magnitude of the correlator
decreases with increasing N.

Next we show in Fig. 5 the correlation coefficient
gN�e1 , l�=GN�e1 , l� /4Dt between the displacement of the first
particle and that of the kth particle �l=k−kM�. One finds that
the correlations are quite large and extend through the entire
assembly. They decrease toward the center, change sign at
the center, and increase in magnitude as one goes toward the
other edge. As may be noted from the figure, the correlations
with the particles in the interior region follow a linear behav-

ior with the particle label, but the invere slope l0 is again of
the order of N. The inset of this figure shows the variation of
l0 with N, which again increases linearly with the system
size. These curve also suggest that the deviations from the
linearity are due to the edge effects. The magnitude of the
correlator between particles at the opposite edges actually
increases with N, unlike the correlations in the interior region
which decrease with N. This behavior of correlations can be
physically understood in the following terms. Whichever
way the particle is displaced, it pushes other particles in the
same direction. As the effect of pushes of successive par-
ticles decreases, the correlation decreases with distance albeit
slowly, vanishing at the center due to symmetry. The reason
it becomes negative for particles in the other half of the
assembly reflects the tendency of the whole assembly to ex-
pand. The growth of the correlations in magnitude is related
to the larger displacements of the particles near the edges.
Stronger correlations between the particles on or near differ-
ent edges implies that the whole assembly expands in a
rather symmetrical manner, and for large N most of the
movement occurs near the edges.

IV. SUMMARY

In conclusion we give a summary of our results along
with some discussion. We have studied the dynamical behav-
ior of N interacting particles �hard spheres� diffusing on an
infinite line. The joint probability distribution of the posi-
tions of the particles with arbitrary initial conditions is ob-
tained exactly. From this we calculate the moments of dis-
placement for each of the particles as a series in powers of
t−1/2. In the long-time limit the leading term for the mth
moment of displacement for any particle goes as tm/2. All the
moments increase in magnitude as one goes outward from
the center of the assembly. In the middle of the assembly, the
mean displacement increases linearly and the mean-square
displacement increases quadratically with the label index of
the particle measured from the center. For particles near the
edges moments grow more rapidly.

The correlations in the system are long ranged, spanning
the entire assembly. We demonstrate this by studying two
cases. One, the correlations of the displacement of a particle
with that of the central particle show a rather slow decay
with the particle label l, measured from the center. Near the
center the variation is exponential, but with a correlation
length which is of order N /2. Two, the correlations of the
displacements of a particle with that of a particle on one edge
are much larger than those in the previous case. They are
positive when the particle is in the same half as the edge and
decrease toward the central particle. On crossing the center
they become negative and increase in magnitude with the
particle label. This behavior is quite different from an equi-
librium assembly of particles in higher dimensions obeying
classical or quantum dynamics. Such strong correlations are
certainly a feature of one dimension. The other aspect of the
problem, apart from the nature of dynamics, is that the as-
sembly here is not in equilibrium. It is expanding with time.
The above calculations show that the size of the assembly
grows on average as t1/2, and the strong correlations ensure
that it is symmetrical on the two edges.
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FIG. 4. �Color online� Correlation coefficient gN�kM , l� on loga-
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Finally we comment on the relation of our study to the
subdiffusive t1/4 behavior for the root-mean-square displace-
ment of the tagged particle, which has been the prime moti-
vation for the earlier studies. In the present set of results, the
diffusion is normal t1/2 type, but note that with increasing N,
apart from the effects around the edges, the coefficients vN�k�
and dN�k� tend to zero. This suggests that, in the infinite-
particle limit, such behavior gives way to something differ-
ent in the bulk. The t1/4 behavior has been obtained for sys-
tems of nonzero density, which may be obtained by
considering N particles on a finite line of length L �18� and
considering the limit N ,L→� with finite density �=N /L
�0. This is a nontrivial limit in our procedure, so it is inter-
esting to examine the additional considerations that have
gone into the derivation of the subdiffusive behavior.

We first discuss a rather transparent derivation of Harris’s
result �8� due to Levitt. Levitt �12� built on the earlier work
on the one-dimensional classical gas of hard-sphere particles
�19,20�, by substituting the single-particle propagators with
diffusion propagators on the infinite line. The collision be-
tween the particles do not change trajectories, but simply
relabel their identification with the particles, which is just the
content of Eq. �7�. Levitt averages over the initial positions
and introduces additional probabilistic arguments for the av-
erage number of label changes to arrive at the subdiffusive
behavior. Similarly, in the exact study of Rödenbeck et al.
�11�, the distribution function of Eq. �7� is averaged over the
initial conditions and a stationarity condition on density is
additionally imposed to achieve the t1/4 result. Similar as-
sumptions are part of the other physically motivated deriva-

tions. Numerical verification of this result also requires simi-
lar conditions. For example, Beijeren et al. �10� obtained the
t1/4 result by maintaining a constant density and performing
an ensemble average in their simulations. Naturally, the other
features associated with finite size, like nonzero mean dis-
placement, expansion of the assembly size, large correlations
between particles near edges, etc., are absent in these station-
ary ensembles.

We conclude with some remarks on the possibility of the
experimental verification of our results. Recently some very
well-characterized single-file diffusion system have been
constructed, where the diffusion of colloidal particles has
been studied in one-dimensional channels constructed by
photolithography �21� or by optical tweezers �22�. These ex-
periments track the trajectories of single particles and estab-
lish the transition from normal diffusion at short times to
non-Fickian behavior at large times. The analysis for such
trajectories for small expanding assemblies should also yield
information on correlation functions studied here. It would
also be of interest to study the variation of the diffusive
behavior with the position of the particles across the assem-
bly to verify our other results and resolve the issues raised
above.
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